(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(g(X)) → mark(h(X))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(X))
mark(c) → active(c)
mark(d) → active(d)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(c) → c2(MARK(d))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
MARK(c) → c6(ACTIVE(c))
MARK(d) → c7(ACTIVE(d))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(c) → c2(MARK(d))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
MARK(c) → c6(ACTIVE(c))
MARK(d) → c7(ACTIVE(d))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
K tuples:none
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
MARK(c) → c6(ACTIVE(c))
MARK(d) → c7(ACTIVE(d))
ACTIVE(c) → c2(MARK(d))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
K tuples:none
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c3, c4, c5, c8, c9, c10, c11
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
H(mark(z0)) → c10(H(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = [4] + [3]x1
POL(G(x1)) = 0
POL(H(x1)) = x1
POL(MARK(x1)) = [4] + [4]x1
POL(active(x1)) = [2]x1
POL(c) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d) = [2]
POL(g(x1)) = [4] + [5]x1
POL(h(x1)) = [3]x1
POL(mark(x1)) = [2] + [2]x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(active(z0)) → c11(H(z0))
K tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
H(mark(z0)) → c10(H(z0))
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c3, c4, c5, c8, c9, c10, c11
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
H(mark(z0)) → c10(H(z0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(active(z0)) → c11(H(z0))
K tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
H(mark(z0)) → c10(H(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c3, c4, c5, c8, c9, c10, c11
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = 0
POL(G(x1)) = x1
POL(H(x1)) = 0
POL(MARK(x1)) = [2]x1
POL(active(x1)) = [1] + [2]x1
POL(c) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d) = [5]
POL(g(x1)) = [4]x1
POL(h(x1)) = 0
POL(mark(x1)) = [4] + [2]x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:
H(active(z0)) → c11(H(z0))
K tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
H(mark(z0)) → c10(H(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c3, c4, c5, c8, c9, c10, c11
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
H(active(z0)) → c11(H(z0))
We considered the (Usable) Rules:none
And the Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(ACTIVE(x1)) = x1
POL(G(x1)) = x1
POL(H(x1)) = x1
POL(MARK(x1)) = [4]x1
POL(active(x1)) = [1] + [2]x1
POL(c) = 0
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1)) = x1
POL(c11(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
POL(c5(x1, x2)) = x1 + x2
POL(c8(x1)) = x1
POL(c9(x1)) = x1
POL(d) = [4]
POL(g(x1)) = [5]x1
POL(h(x1)) = x1
POL(mark(x1)) = [2]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(g(z0)) → mark(h(z0))
active(c) → mark(d)
active(h(d)) → mark(g(c))
mark(g(z0)) → active(g(z0))
mark(h(z0)) → active(h(z0))
mark(c) → active(c)
mark(d) → active(d)
g(mark(z0)) → g(z0)
g(active(z0)) → g(z0)
h(mark(z0)) → h(z0)
h(active(z0)) → h(z0)
Tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(mark(z0)) → c10(H(z0))
H(active(z0)) → c11(H(z0))
S tuples:none
K tuples:
ACTIVE(g(z0)) → c1(MARK(h(z0)), H(z0))
ACTIVE(h(d)) → c3(MARK(g(c)), G(c))
MARK(g(z0)) → c4(ACTIVE(g(z0)), G(z0))
H(mark(z0)) → c10(H(z0))
MARK(h(z0)) → c5(ACTIVE(h(z0)), H(z0))
G(mark(z0)) → c8(G(z0))
G(active(z0)) → c9(G(z0))
H(active(z0)) → c11(H(z0))
Defined Rule Symbols:
active, mark, g, h
Defined Pair Symbols:
ACTIVE, MARK, G, H
Compound Symbols:
c1, c3, c4, c5, c8, c9, c10, c11
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))